Bibliography

  • [1] A. Abragam and B. Bleaney (1970) Electron paramagnetic resonance of transition ions. Clarendon Press. Cited by: §1.1, §1.1, §4.3, §6.1.2, §6.2.1, §6.2.1.
  • [2] P. Absil, R. Mahony, and R. Sepulchre (2009) Optimization algorithms on matrix manifolds. Princeton University Press. Cited by: §3.4, §3.4, §3.4.
  • [3] S. Altshuler and B. Kozyrev (1964) Electron paramagnetic resonance of compounds of elements of intermediate groups. Academic Press, New York. Note: Originally published in Russian in 1961. Cited by: §1.1.
  • [4] P. W. Anderson (1973) Resonating valence bonds: a new kind of insulator?. Materials Research Bulletin 8 (2), pp. 153–160. Cited by: §1.6.
  • [5] R. Bachmann, F. DiSalvo Jr, T. Geballe, R. Greene, R. Howard, C. King, H. Kirsch, K. Lee, R. Schwall, H. Thomas, et al. (1972) Heat capacity measurements on small samples at low temperatures. Review of Scientific Instruments 43 (2), pp. 205–214. Cited by: §2.3.1.
  • [6] A. Balbashov, A. Mukhin, V. Y. Ivanov, L. Iskhakova, and M. Voronchikhina (2017) Electric and magnetic properties of titanium-cobalt-oxide single crystals produced by floating zone melting with light heating. Low Temperature Physics 43 (8), pp. 965–970. Cited by: §6.1.3.
  • [7] L. Balents (2010) Spin liquids in frustrated magnets. nature 464 (7286), pp. 199–208. Cited by: §1.6.
  • [8] A. Banerjee, P. Lampen-Kelley, J. Knolle, C. Balz, A. A. Aczel, B. Winn, Y. Liu, D. Pajerowski, J. Yan, C. A. Bridges, et al. (2018) Excitations in the field-induced quantum spin liquid state of α-RuCl3. NPJ Quantum Materials 3 (1), pp. 8. Cited by: §1.5, §1.6.
  • [9] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B. Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant, R. Moessner, and S. E. Nagler (2017) Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356 (6342), pp. 1055–1059. Cited by: §1.6.
  • [10] A. Biffin, R. Johnson, S. Choi, F. Freund, S. Manni, A. Bombardi, P. Manuel, P. Gegenwart, and R. Coldea (2014) Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in β-Li2IrO3: full solution via magnetic resonant x-ray diffraction. Physical Review B 90 (20), pp. 205116. Cited by: §1.6, Figure 5.8, §5.6, §5.6.
  • [11] A. Biffin, R. Johnson, I. Kimchi, R. Morris, A. Bombardi, J. Analytis, A. Vishwanath, and R. Coldea (2014) Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-li2iro3. Physical Review Letters 113 (19), pp. 197201. Cited by: §1.6.
  • [12] S. J. Blundell and K. M. Blundell (2009) Concepts in thermal physics. Oxford University Press. Cited by: §1.2, §2.3.1, §2.3.1.
  • [13] S. Blundell (2001) Magnetism in condensed matter. Oxford University Press. Cited by: §1.1, §1.2, §3.2.
  • [14] A. Bogdanov, A. Zhuravlev, and U. Rößler (2007) Spin-flop transition in uniaxial antiferromagnets: magnetic phases, reorientation effects, and multidomain states. Physical Review B 75 (9), pp. 094425. Cited by: §1.5, §3.2.
  • [15] L. Capriotti, A. E. Trumper, and S. Sorella (1999) Long-range Néel order in the triangular Heisenberg model. Physical Review Letters 82 (19), pp. 3899. Cited by: §1.6.
  • [16] J. Chaloupka, G. Jackeli, and G. Khaliullin (2010) Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. Physical Review Letters 105 (2), pp. 027204. Cited by: §1.6, §4.1.
  • [17] J. Chaloupka, G. Jackeli, and G. Khaliullin (2013) Zigzag magnetic order in the iridium oxide na2iro3. Physical Review Letters 110 (9), pp. 097204. Cited by: §1.6.
  • [18] S. Choi, R. Coldea, A. Kolmogorov, T. Lancaster, I. Mazin, S. Blundell, P. Radaelli, Y. Singh, P. Gegenwart, K. Choi, et al. (2012) Spin waves and revised crystal structure of honeycomb iridate na2iro3. Physical Review Letters 108 (12), pp. 127204. Cited by: §1.5, §1.6, §4.2.
  • [19] A. Coldea, L. Seabra, A. McCollam, A. Carrington, L. Malone, A. Bangura, D. Vignolles, P. Van Rhee, R. McDonald, T. Sörgel, et al. (2014) Cascade of field-induced magnetic transitions in a frustrated antiferromagnetic metal. Physical Review B 90 (2), pp. 020401. Cited by: §1.5.
  • [20] R. Coldea, D. Tennant, E. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer (2010) Quantum criticality in an Ising chain: experimental evidence for emergent e8 symmetry. Science 327 (5962), pp. 177–180. Cited by: §1.5.
  • [21] M. J. Daum, A. Ramanathan, A. I. Kolesnikov, S. Calder, M. Mourigal, and H. S. La Pierre (2021) Collective excitations in the tetravalent lanthanide honeycomb antiferromagnet Na2PrO3. Physical Review B 103 (12), pp. L121109. Cited by: §4.1, §4.10, §4.2, §4.2, §4.3, §4.4, §4.4, §4.4, §4.5, §4.6, §4.7, §4.8, §5.4, §5.7.
  • [22] L. J. De Jongh and A. R. Miedema (2001) Experiments on simple magnetic model systems. Advances in Physics 50 (8), pp. 947–1170. Cited by: §5.5.
  • [23] P. Debye (1913) Interferenz von röntgenstrahlen und wärmebewegung. Annalen der Physik 348 (1), pp. 49–92. Cited by: §2.4.1.
  • [24] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio (2007) Group theory: application to the physics of condensed matter. Springer. Cited by: §4.6, §5.6.
  • [25] M. Dresselhaus and G. Dresselhaus (2002)Applications of group theory to the physics of solids(Website) Note: MIT Lecture Notes External Links: Link Cited by: §2.3.1, §4.4, §5.4, §5.7.1.
  • [26] M. Elliot, P. A. McClarty, D. Prabhakaran, R. Johnson, H. Walker, P. Manuel, and R. Coldea (2021) Order-by-disorder from bond-dependent exchange and intensity signature of nodal quasiparticles in a honeycomb cobaltate. Nature Communications 12 (1), pp. 3936. Cited by: §6.1.1, §6.1.2, §6.1.3, §6.1.4, §6.1.4, §6.1.4, §6.1.6, §6.2.2.
  • [27] M. Elliot (2022) Inelastic neutron and resonant elastic x-ray scattering studies of honeycomb quantum magnets. Ph.D. Thesis, University of Oxford. Cited by: Figure 6.17, Figure 6.3, §6.1.1, §6.1.2, §6.1.3, §6.2.1, §6.2.2, Table 6.5.
  • [28] P. Ewald (1969) Introduction to the dynamical theory of x-ray diffraction. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 25 (1), pp. 103–108. Cited by: §2.4.2.
  • [29] F. Freund, S. Williams, R. Johnson, R. Coldea, P. Gegenwart, and A. Jesche (2016) Single crystal growth from separated educts and its application to lithium transition-metal oxides. Scientific Reports 6 (1), pp. 35362. Cited by: §4.2.
  • [30] J. Goldstone (1961) Field theories with «superconductor» solutions. Il Nuovo Cimento (1955-1965) 19, pp. 154–164. Cited by: §6.1.4.
  • [31] J. Greedan, N. Raju, and I. Davidson (1997) Long range and short range magnetic order in orthorhombic limno2. Journal of Solid State Chemistry 128 (2), pp. 209–214. Cited by: §5.5.
  • [32] ISODISTORT External Links: Link Cited by: Table 4.3, Table 5.6.
  • [33] D. P. Hardin, T. Michaels, and E. B. Saff (2016) A comparison of popular point configurations on 𝕊2. arXiv preprint arXiv:1607.04590. Cited by: §4.7.
  • [34] E. Harris, J. Mellor, and S. Parke (1984) Electron paramagnetic resonance of tetravalent praseodymium in zircon. physica status solidi (b) 122 (2), pp. 757–760. Cited by: §4.3.
  • [35] S. Hendricks and E. Teller (1942) X-ray interference in partially ordered layer lattices. The Journal of Chemical Physics 10 (3), pp. 147–167. Cited by: §4.2.
  • [36] Y. Hinatsu and Y. Doi (2006) Crystal structures and magnetic properties of alkali-metal lanthanide oxides a2lno3 (a= li, na; ln= ce, pr, tb). Journal of Alloys and Compounds 418 (1-2), pp. 155–160. Cited by: §4.2, §4.2, §4.4, §4.8.
  • [37] Y. Hinatsu and N. Edelstein (1994) Electron paramagnetic resonance spectrum of Pr4+ in BaCeO3. Journal of Solid State Chemistry 112 (1), pp. 53–57. Cited by: §4.3.
  • [38] M. Hoffmann, K. Dey, J. Werner, R. Bag, J. Kaiser, H. Wadepohl, Y. Skourski, M. Abdel-Hafiez, S. Singh, and R. Klingeler (2021) Magnetic phase diagram, magnetoelastic coupling, and grüneisen scaling in CoTiO3. Physical Review B 104 (1), pp. 014429. Cited by: Figure 6.10, Figure 6.6, §6.1.3, §6.1.5, §6.1.5.
  • [39] W. Hu, S. Gong, W. Zhu, and D. Sheng (2015) Competing spin-liquid states in the spin-1/2 Heisenberg model on the triangular lattice. Physical Review B 92 (14), pp. 140403. Cited by: §1.6.
  • [40] F. Hund (1927) Linienspektren: und periodisches system der elemente. Vol. 4, Springer. Cited by: §1.1.
  • [41] G. Jackeli and G. Khaliullin (2009) Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Physical Review Letters 102 (1), pp. 017205. Cited by: §1.6, §4.1, §5.7.
  • [42] S. Jang, R. Sano, Y. Kato, and Y. Motome (2019) Antiferromagnetic Kitaev interaction in f-electron based honeycomb magnets. Physical Review B 99 (24), pp. 241106. Cited by: §1.6, §4.1, §4.10, §4.3, §5.1, §5.11.
  • [43] S. Jang, R. Sano, Y. Kato, and Y. Motome (2020) Computational design of f-electron Kitaev magnets: honeycomb and hyperhoneycomb compounds A2PrO3 (A=alkali metals). Physical Review Materials 4 (10), pp. 104420. Cited by: §1.6, §4.3, §5.1, §5.11.
  • [44] R. D. Johnson, S. Williams, A. Haghighirad, J. Singleton, V. Zapf, P. Manuel, I. Mazin, Y. Li, H. O. Jeschke, R. Valentí, et al. (2015) Monoclinic crystal structure of α- rucl3 and the zigzag antiferromagnetic ground state. Physical Review B 92 (23), pp. 235119. Cited by: §1.5, §1.6, §4.2.
  • [45] A. Kamra, M. Schreier, H. Huebl, and S. T. Goennenwein (2014) Theoretical model for torque differential magnetometry of single-domain magnets. Physical Review B 89 (18), pp. 184406. Cited by: §2.2.3.
  • [46] J. Kanamori (1957) Theory of the magnetic properties of ferrous and cobaltous oxides, i. Progress of Theoretical Physics 17 (2), pp. 177–196. Cited by: §1.6.
  • [47] Y. Kanda (1991) Piezoresistance effect of silicon. Sensors and Actuators A: Physical 28 (2), pp. 83–91. Cited by: §2.2.3.
  • [48] H. Kato, M. Yamada, M. Nakagawa, G. Kido, and Y. Nakagawa (1990) First-order magnetization process in oblique-easy-axis antiferromagnet FeTiO3. Journal of Magnetism and Magnetic Materials 90, pp. 67–68. Cited by: §6.2.1, §6.2.
  • [49] H. Kato, Y. Yamaguchi, M. Ohashi, M. Yamada, H. Takei, and S. Funahashi (1983) On the obliqueness of the easy axis in collinear antiferromagnetic FeTiO3. Solid State Communications 45 (8), pp. 669–672. Cited by: §6.2.
  • [50] H. Kato, M. Yamada, H. Yamauchi, H. Hiroyoshi, H. Takei, and H. Watanabe (1982) Metamagnetic phase transitions in FeTiO3. Journal of the Physical Society of Japan 51 (6), pp. 1769–1777. Cited by: §1.5, Figure 6.16, Figure 6.20, §6.2.
  • [51] V. M. Katukuri, S. Nishimoto, V. Yushankhai, A. Stoyanova, H. Kandpal, S. Choi, R. Coldea, I. Rousochatzakis, L. Hozoi, and J. Van Den Brink (2014) Kitaev interactions between j=1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum chemistry calculations. New Journal of Physics 16 (1), pp. 013056. Cited by: §4.1.
  • [52] K. Kidoh, K. Tanaka, F. Marumo, and H. Takei (1984) Electron density distribution in an ilmenite-type crystal of cobalt (ii) titanium (iv) trioxide. Acta Crystallographica Section B: Structural Science 40 (2), pp. 92–96. Cited by: §6.1.1, §6.1.1.
  • [53] I. Kimchi, J. G. Analytis, and A. Vishwanath (2014) Three-dimensional quantum spin liquids in models of harmonic-honeycomb iridates and phase diagram in an infinite-d approximation. Physical Review B 90 (20), pp. 205126. Cited by: §1.6, §5.1.
  • [54] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi (1983) Optimization by simulated annealing. Science 220 (4598), pp. 671–680. Cited by: §3.1.
  • [55] A. Kitaev (2006) Anyons in an exactly solved model and beyond. Annals of Physics 321 (1), pp. 2–111. Cited by: §1.3, §1.6, §4.1.
  • [56] C. Kittel and P. McEuen (2018) Introduction to solid state physics. John Wiley & Sons. Cited by: §1.2.
  • [57] L. D. Landau and E. M. Lifshitz (2013) Statistical physics: volume 5. Vol. 5, Elsevier. Cited by: §1.5, §2.3.1, §4.6, §4.7, §5.7.1.
  • [58] A. Landé (1921) Über den anomalen zeemaneffekt (teil i). Zeitschrift für Physik 5 (4), pp. 231–241. Cited by: §1.1.
  • [59] E. K. Lee and Y. B. Kim (2015) Theory of magnetic phase diagrams in hyperhoneycomb and harmonic-honeycomb iridates. Physical Review B 91 (6), pp. 064407. Cited by: §1.6, §3.1, §5.1, §5.11, §5.7.
  • [60] E. K. Lee, R. Schaffer, S. Bhattacharjee, and Y. B. Kim (2014) Heisenberg-Kitaev model on the hyperhoneycomb lattice. Physical Review B 89 (4), pp. 045117. Cited by: §5.1.
  • [61] S. Lee, E. K. Lee, A. Paramekanti, and Y. B. Kim (2014) Order-by-disorder and magnetic field response in the Heisenberg-Kitaev model on a hyperhoneycomb lattice. Physical Review B 89 (1), pp. 014424. Cited by: §5.7.
  • [62] X. Liu, T. Berlijn, W. Yin, W. Ku, A. Tsvelik, Y. Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. Hill (2011) Long-range magnetic ordering in Na2IrO3. Physical Review B 83 (22), pp. 220403. Cited by: §1.6.
  • [63] J. Luttinger and L. Tisza (1946) Theory of dipole interaction in crystals. Physical Review 70 (11-12), pp. 954. Cited by: §3.1.
  • [64] D. Lyons and T. Kaplan (1960) Method for determining ground-state spin configurations. Physical Review 120 (5), pp. 1580. Cited by: §3.1.
  • [65] S. Mandal and N. Surendran (2009) Exactly solvable Kitaev model in three dimensions. Physical Review B 79 (2), pp. 024426. Cited by: §1.6, §5.1, §5.7.
  • [66] A. McCollam, P. van Rhee, J. Rook, E. Kampert, U. Zeitler, and J. Maan (2011) High sensitivity magnetometer for measuring the isotropic and anisotropic magnetisation of small samples. Review of Scientific Instruments 82 (5), pp. 053909. Cited by: §2.2.2, §2.2.2.
  • [67] K. A. Modic, M. D. Bachmann, B. Ramshaw, F. Arnold, K. Shirer, A. Estry, J. Betts, N. J. Ghimire, E. Bauer, M. Schmidt, et al. (2018) Resonant torsion magnetometry in anisotropic quantum materials. Nature Communications 9 (1), pp. 1–8. Cited by: §2.2.3.
  • [68] K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay, A. Biffin, S. Choi, R. D. Johnson, R. Coldea, P. Watkins-Curry, G. T. McCandless, et al. (2014) Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate. Nature Communications 5 (1), pp. 4203. Cited by: §1.6, §2.2.1, §5.1.
  • [69] Y. Motome, R. Sano, S. Jang, Y. Sugita, and Y. Kato (2020) Materials design of Kitaev spin liquids beyond the Jackeli–Khaliullin mechanism. Journal of Physics: Condensed Matter 32 (40), pp. 404001. Cited by: §4.1.
  • [70] A. Nakua, H. Yun, J. Reimers, J. Greedan, and C. Stager (1991) Crystal structure, short range and long range magnetic ordering in CuSb2O6. Journal of Solid State Chemistry 91 (1), pp. 105–112. Cited by: §5.5.
  • [71] J. Nasu, T. Kaji, K. Matsuura, M. Udagawa, and Y. Motome (2014) Finite-temperature phase transition to a quantum spin liquid in a three-dimensional Kitaev model on a hyperhoneycomb lattice. Physical Review B 89 (11), pp. 115125. Cited by: §5.7.
  • [72] L. Néel (1936) Propriétés magnétiques de l’état métallique et énergie d’interaction entre atomes magnétiques. In Annales de Physique, Vol. 11, pp. 232–279. Cited by: §1.5.
  • [73] L. Néel (1952) Antiferromagnetism and ferrimagnetism. Proceedings of the Physical Society. Section A 65 (11), pp. 869. Cited by: §1.4, §1.5.
  • [74] D. J. Newman and B. Ng (2000) Crystal field handbook. Vol. 43, Cambridge University Press Cambridge. Cited by: §1.1, §6.2.1.
  • [75] R. Newnham, J. Fang, and R. Santoro (1964) Crystal structure and magnetic properties of CoTiO3. Acta Crystallographica 17 (3), pp. 240–242. Cited by: §6.1.1.
  • [76] E. Ohmichi and T. Osada (2002) Torque magnetometry in pulsed magnetic fields with use of a commercial microcantilever. Review of Scientific Instruments 73 (8), pp. 3022–3026. Cited by: §2.2.3.
  • [77] F. Ohnesorge and G. Binnig (1993) True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260 (5113), pp. 1451–1456. Cited by: §2.2.3.
  • [78] R. Okuma, K. MacFarquharson, J. R. D., D. Voneshen, P. Manuel, and R. Coldea Noncollinear magnetism from frustrated bond-dependent anisotropic exchange on the f-electron hyperhoneycomb lattice β-Na2PrO3. Note: In preparation Cited by: §5.11, §5.6, §5.6, §5.7.1, §5.7.1, §5.7.1, §5.7.
  • [79] K. Plumb, J. Clancy, L. Sandilands, V. V. Shankar, Y. Hu, K. Burch, H. Kee, and Y. Kim (2014) α-RuCl3: a spin-orbit assisted mott insulator on a honeycomb lattice. Physical Review B 90 (4), pp. 041112. Cited by: §1.6.
  • [80] A. W. Poyser (1892) Magnetism and electricity: a manual for students in advanced classes. Longmans, Green, & Company. Cited by: §2.1.1.
  • [81] J. G. Rau, E. K. Lee, and H. Kee (2014) Generic spin model for the honeycomb iridates beyond the Kitaev limit. Physical Review Letters 112 (7), pp. 077204. Cited by: §1.6, §3.1, §4.1, §4.10, §4.7.
  • [82] J. G. Rau, E. K. Lee, and H. Kee (2016) Spin-orbit physics giving rise to novel phases in correlated systems: Iridates and related materials. Annual Review of Condensed Matter Physics 7, pp. 195–221. Cited by: §1.6.
  • [83] J. Rodríguez-Carvajal (2001) FullProf. CEA/Saclay, France 1045, pp. 132–146. Cited by: §2.4.2, Figure 4.2, §4.2, Table 4.1, Table 4.2, Figure 5.2, §5.2, §5.6, Table 5.1, Table 5.2.
  • [84] H. Rohrer and H. Thomas (1969) Phase transitions in the uniaxial antiferromagnet. Journal of Applied Physics 40 (3), pp. 1025–1027. Cited by: §3.2.
  • [85] A. Ruiz, A. Frano, N. P. Breznay, I. Kimchi, T. Helm, I. Oswald, J. Y. Chan, R. Birgeneau, Z. Islam, and J. G. Analytis (2017) Correlated states in β-Li2IrO3 driven by applied magnetic fields. Nature Communications 8 (1), pp. 961. Cited by: §1.5.
  • [86] I. Ryabov (1999) On the generation of operator equivalents and the calculation of their matrix elements. Journal of Magnetic Resonance 140 (1), pp. 141–145. Cited by: §1.1, §4.3.
  • [87] H. Sato and T. Iwai (2015) A new, globally convergent riemannian conjugate gradient method. Optimization 64 (4), pp. 1011–1031. Cited by: §3.4.
  • [88] H. Sato (2021) Riemannian optimization and its applications. Springer. Cited by: §3.4.
  • [89] A. Savitzky and M. J. Golay (1964) Smoothing and differentiation of data by simplified least squares procedures.. Analytical Chemistry 36 (8), pp. 1627–1639. Cited by: §4.8.
  • [90] L. Seabra, T. Momoi, P. Sindzingre, and N. Shannon (2011) Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in an applied magnetic field. Physical Review B 84 (21), pp. 214418. Cited by: §4.10.
  • [91] S. H. Simon (2013) The oxford solid state basics. OUP Oxford. Cited by: §2.4.1.
  • [92] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart (2012) Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. Physical Review Letters 108 (12), pp. 127203. Cited by: §1.6, §4.1.
  • [93] J. C. Slater (1929) The theory of complex spectra. Physical Review 34 (10), pp. 1293. Cited by: §1.1.
  • [94] J. J. Stickler, S. Kern, A. Wold, and G. Heller (1967) Magnetic resonance and susceptibility of several ilmenite powders. Physical Review 164 (2), pp. 765. Cited by: §6.1.3, §6.1.5.
  • [95] P. F. Sullivan and G. Seidel (1968) Steady-state, AC-temperature calorimetry. Physical Review 173 (3), pp. 679. Cited by: §2.3.2, §2.3.2, §2.3.2.
  • [96] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler (2019) Concept and realization of kitaev quantum spin liquids. Nature Reviews Physics 1 (4), pp. 264–280. Cited by: §1.6, §4.1.
  • [97] H. Takahashi, K. Ando, and Y. Shirakawabe (2002) Self-sensing piezoresistive cantilever and its magnetic force microscopy applications. Ultramicroscopy 91 (1-4), pp. 63–72. Cited by: §2.2.3.
  • [98] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono, L. Veiga, G. Fabbris, D. Haskel, and H. Takagi (2015) Hyperhoneycomb iridate β-Li2IrO3 as a platform for Kitaev magnetism. Physical Review Letters 114 (7), pp. 077202. Cited by: §1.6, §5.2, §5.4, §5.6.
  • [99] S. Toth and B. Lake (2015) Linear spin wave theory for single-q incommensurate magnetic structures. Journal of Physics: Condensed Matter 27 (16), pp. 166002. Cited by: §3.4.
  • [100] K. Trueblood, H. Bürgi, H. Burzlaff, J. Dunitz, C. Gramaccioli, H. Schulz, U. Shmueli, and S. Abrahams (1996) Atomic dispacement parameter nomenclature. report of a subcommittee on atomic displacement parameter nomenclature. Acta Crystallographica Section A: Foundations of Crystallography 52 (5), pp. 770–781. Cited by: §2.4.1.
  • [101] I. Waller (1923) Zur frage der einwirkung der wärmebewegung auf die interferenz von röntgenstrahlen. Zeitschrift für Physik 17 (1), pp. 398–408. Cited by: §2.4.1.
  • [102] G. Wannier (1950) Antiferromagnetism. the triangular Ising net. Physical Review 79 (2), pp. 357. Cited by: §1.6.
  • [103] H. Watanabe, H. Yamauchi, and H. Takei (1980) Magnetic anisotropies in MTiO3 (M= Co, Ni). Journal of Magnetism and Magnetic Materials 15, pp. 549–550. Cited by: §6.1.5.
  • [104] S. Williams, R. Johnson, F. Freund, S. Choi, A. Jesche, I. Kimchi, S. Manni, A. Bombardi, P. Manuel, P. Gegenwart, et al. (2016) Incommensurate counterrotating magnetic order stabilized by kitaev interactions in the layered honeycomb α-Li2IrO3. Physical Review B 93 (19), pp. 195158. Cited by: §1.6.
  • [105] R. Wolf and R. Hoppe (1988) Über na2pro3 und na2tbo3. Zeitschrift für Anorganische und Allgemeine Chemie 556 (1), pp. 97–108. Cited by: §5.1, §5.2.
  • [106] A. Wolter, L. Corredor, L. Janssen, K. Nenkov, S. Schönecker, S. Do, K. Choi, R. Albrecht, J. Hunger, T. Doert, et al. (2017) Field-induced quantum criticality in the Kitaev system α-RuCl3. Physical Review B 96 (4), pp. 041405. Cited by: §5.4.
  • [107] H. Xiao, T. Hu, C. Almasan, T. Sayles, and M. Maple (2006) Angular-dependent torque measurements on CeCoIn5 single crystals. Physical Review B 73 (18), pp. 184511. Cited by: §4.5, §5.5.
  • [108] R. Yadav, N. A. Bogdanov, V. M. Katukuri, S. Nishimoto, J. Van Den Brink, and L. Hozoi (2016) Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3. Scientific Reports 6 (1), pp. 37925. Cited by: §1.5.
  • [109] Y. Yamaguchi, H. Kato, H. Takei, A. Goldman, and G. Shirane (1986) Re-examination of the magnetic structure of FeTiO3. Solid State Communications 59 (12), pp. 865–868. Cited by: §6.2.
  • [110] S. Yan, D. A. Huse, and S. R. White (2011) Spin-liquid ground state of the S=1/2 Kagome Heisenberg antiferromagnet. Science 332 (6034), pp. 1173–1176. Cited by: §1.6.
  • [111] B. Yuan, I. Khait, G. Shu, F. Chou, M. Stone, J. Clancy, A. Paramekanti, and Y. Kim (2020) Dirac magnons in a honeycomb lattice quantum xy magnet cotio 3. Physical Review X 10 (1), pp. 011062. Cited by: §6.1.4, Table 6.2.
  • [112] P. Zeeman (1897) The effect of magnetisation on the nature of light emitted by a substance. Nature 55 (1424), pp. 347. Cited by: §1.5.
  • [113] W. Zhang, K. Nadeem, H. Xiao, R. Yang, B. Xu, H. Yang, and X. Qiu (2015) Spin-flop transition and magnetic phase diagram in CaCo2As2 revealed by torque measurements. Physical Review B 92 (14), pp. 144416. Cited by: §1.5, §2.2.2, §3.2, §4.5, §5.5.